Solutions - Homework 4

(Due date: April 2nd @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (20 PTS)

 Design a counter using a Finite State Machine (FSM): Counter features:

- ✓ Count: **000**, 001, 010, 011, 111, 110, 101, 100, **000**, ...
- ✓ *resetn*: Asynchronous active-low input signal. It initializes the count to "000"
- ✓ Input *E*: Synchronous input that increases the count when it is set to '1'.
- ✓ output z: It becomes '1' when the count is 111 or 100.

- Provide the State Diagram (any representation), State Table, and the Excitation Table. Is this a Mealy or a Moore machine? Why? (10 pts)
- Provide the excitation equations (simplify your circuit using K-maps or the Quine-McCluskey algorithm) (5 pts)
- Sketch the circuit. (5 pts)

• State Diagram and State Table:

The output 'z' only depends on the present state \Rightarrow Moore FSM

- State Assignment.
 - ✓ S1: Q = 000
 - ✓ S2: Q = 001
 - ✓ S3: Q = 010
 - ✓ S4: Q = 011
 - ✓ S5: Q = 111
 - ✓ S6: Q = 110
 - ✓ S7: Q = 101
 - ✓ S8: Q = 100

Excitation Table: PRESENT STATE NEXTSTATE

Е	$Q_2 Q_1 Q_0$ (t)	$Q_2Q_1Q_0(t+1)$	z
0	000	0 0 0	0
0	001	001	0
0	010	010	0
0	011	011	0
0	111	111	1
0	110	110	0
0	101	101	0
0	100	100	1
1	000	001	0
1	001	010	0
1	010	011	0
1	011	111	0
1	111	110	1
1	110	101	0
1	101	100	0
1	100	0 0 0	1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-378: Digital Logic and Microprocessor Design

Q₂(t+1) EQ₂ 00 **Q1(t+1)** EQ200 Excitation equations and minimization: $Q_1 Q_0$ $Q_1 Q_0$ $Q_2(t+1) = \overline{E}Q_2 + Q_1Q_2 + Q_0Q_2 + EQ_1Q_0$ $Q_1(t+1) = \overline{E}Q_1 + Q_1Q_0 + \overline{Q_2}Q_1 + E\overline{Q_2}Q_0$ $Q_0(t+1) = \overline{E}Q_0 + EQ_1\overline{Q_0} + E\overline{Q_2}(Q_1 + \overline{Q_0})$ $z = \overline{Q_1} \, \overline{Q_0} Q_2 + Q_1 Q_0 Q_2 = Q_2 (\overline{Q_1 \oplus Q_0})$ Q₀(t+1) EQ₂ 00 EQ₂ 00 z $Q_1 Q_0$ $Q_1 Q_0$

Circuit Implementation:

PROBLEM 2 (15 PTS)

 Sequence detector (with overlap): Draw the state diagram (<u>both normal FSM representation and ASM chart</u>) of a circuit (with an input *x*) that detects the following sequence: 00110101. The detector must assert an output *z* when the sequence is detected.

PROBLEM 3 (30 PTS)

• Complete the timing diagram of the following FSM (represented as an ASM chart). (10 pts)

Complete the timing diagram of the following FSM. Is this a Mealy or a Moore machine? Why? (5 pts)

The output 'z' does not depend on the input 'x' \Rightarrow It is a Moore-type FSM.

 Provide the state diagram (in ASM form) and complete the timing diagram of the FSM whose VHDL description is listed below. (15 pts)

PROBLEM 4 (20 PTS)

• Complete the timing diagram of the following digital circuit that includes an FSM (in ASM form) and a datapath circuit.

PROBLEM 5 (15 PTS)

Attach a printout of your Project Status Report (no more than three pages, single-spaced, 2 columns). This report should contain the current status of the project. You <u>MUST</u> use the provided template (Final Project – Report Template.docx).